The definition of Precision Agriculture has evolved over 22 years and has more than a few associated acronyms (PA; SSCM=site-specific crop management; VRT=variable rate technology).

If one were to attempt to summarize the definition of PA: it involves awareness of growing conditions within a field and the use of technology as a decision support tool to maximize production efficiency while minimizing environmental impact of agricultural inputs.

We may be most familiar with PATs (Precision Agriculture Technologies) such as GPS-guided tractors or the use of UAVs (unmanned aerial vehicles AKA “drones”) as imagery sensors or product applicators. So many acronyms! Other PATs include robot weeders and mechanized transplanters.

Check out The University of Sydney’s Australian Centre for Field Robotics promo video:

Resources closer to home include the UAS at OSU program, and a fellow Beaver blogger who has a great annotated resource list about Drones in Agriculture here.

Perhaps you’re not quite ready for autonomous tech. One simple and easy way to jump on the PA bandwagon is to use calibration tools. These are based on mathematical models of soil and crop parameters for a specific latitude, soil type, etc.. At the click of a button, they provide output estimates to help schedule irrigation, determine fertilizer needs, or predict harvest dates. These are in addition to the MANY mobile apps now available.

Univ. of Florida Irrigation scheduler (.xls)

Louisiana State Univ. Spreader calibration (.xls)

Oregon State University Croptime (web app)

Another new trend (and a way to sneak in one last acronym) is for companies to offer SaaS: Software as Service, like our friends at Valley Agronomics.

As you go about planning and planting this year, why not give these PA tools a try. The program developers are usually very receptive to comments, as it helps them improve the models, or know that they are working adequately.

DISCLAIMER: Mention or links to any of the products or services above do not imply endorsement.

 

WEEK 7 –

  • Seed corn maggot  – Poor emergence may be a sign of underground feeding by seed corn maggots, which are the immature stage of Delia platura, the bean seed fly. Plants are most susceptible at seedling stage. Host plants include: green and broad beans, onion, brassicas, peas, pepper, potato, spinach, and beet.
    • SCM is especially attracted to newly-tilled soil with high organic matter / manure inputs.
    • They have multiple, overlapping generations per year. This image by U. of Illinois highlights how adults, eggs, and maggots may all be present at the same time.
    • If emergence is low, scout 2-ft row sections for seed damage and white, tapered maggots that look very similar to cabbage maggot. Both species favor cool conditions for egg-laying, but D. platura are more active as adults in warm weather.
    • There is a fascinating biological (fungal) control for SCM that alters the fly’s behavior:  It causes the flies to settle on tips of grain stems or high-up flowers and die, which increases dispersal of the fungus to spread farther.
  • Seed bugs – There have been recent complaints of high numbers of ‘small, flying insects’ in both urban and rural areas since mid-April. The bugs are 3-4mm with elongate bodies and wing covers with 4-5 veins. Experts agree that the taxonomy of this group is in need of a major revision, so they are usually referenced to genus level only.
    • More than half of all known Nysius species are from Hawaii, including the endemic wēkiu bug, that migrates to the summit of Mauna Kea each year.
    • Nysius spp. are seed predators and tend to be less selective then other, related  Lygaeidae. Extensive damage can occur in wheat, quinoa, canola, and sorghum. Occasional feeding can occur on ornamentals, other cereals, and tomatoes.
    • Similar to boxelder bugs, they are attracted to large, sunny, white buildings, which has led to nuisance reports by homeowners. Various Ask-an-Expert questions have been submitted, one of which I was able to identify last week as Nysius, probably N. raphanus. The high numbers we are seeing now is likely the result of overwintered nymphs maturing into active, winged adults. There are 4-7 generations per year.

WEEK 14:

    • The 2nd generation of 12-spot beetles has emerged, and activity will likely remain high through September. Sweep fields with a sweep net to accurately assess population levels. Take a minimum of four samples (ten arcs of the net per sample) from different parts of the field. Beetles tend to concentrate on field edges. At this time of year, adult beetles are pests within snap bean and squash fields. They feed on folliage and developing pods.

     

    • There has been a boom of adult diamondback moths detected in pheromone traps. Development will be rapid under warm temperatures. Intensify field scouting so that treatments can be applied to avoid contamination.

    Read the full pest report HERE and subscribe to receive alert updates.

Save